This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713926090

Crystal structure of 4-methoxybenzylidene-4'-*n*-butylaniline (MBBA) The C and C phases

C₄ and C₃ phases M. More^a; C. Gors^a; P. Derollez^a; J. Matavar^a

^a Laboratoire de Dynamique et Structure des Matériaux Moléculaires, (C.N.R.S. URA 801) U.S.T.L., Villeneuve d'Ascq Cedex, France

To cite this Article More, M. , Gors, C. , Derollez, P. and Matavar, J.(1995) 'Crystal structure of 4-methoxybenzylidene-4'*n*-butylaniline (MBBA) The C₄ and C₃ phases', Liquid Crystals, 18: 2, 337 — 345 **To link to this Article: DOI:** 10.1080/02678299508036630 **URL:** http://dx.doi.org/10.1080/02678299508036630

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Crystal structure of 4-methoxybenzylidene-4'-*n*-butylaniline (MBBA) The C₄ and C₃ phases

by M. MORE*, C. GORS, P. DEROLLEZ and J. MATAVAR

Laboratoire de Dynamique et Structure des Matériaux Moléculaires, (C.N.R.S. URA 801) U.S.T.L., 59655 Villeneuve d'Ascq Cedex, France

(Received 14 September 1993; in final form 20 May 1994; accepted 16 June 1994)

Precise knowledge of thermal history (quenching and annealing) of the phases of the quenched liquid crystal MBBA has permitted us, from powder X-ray data, to attribute unequivocally a previously published structure to the C_4 metastable phase. Lattice parameters of the C_3 phase are also proposed.

1. Introduction

MBBA (4-methoxybenzylidene-4'-*n*-butylaniline) is a well-known thermotropic mesomorphic material which is considered as a model compound for liquid crystal studies [1, 2].

The elongated molecule has the formula

СН₃--О--Ф--СН=-N--Ф--С₄H₉

where Φ is a phenyl group; it contains a central semi-rigid fragment and a more flexible alkyl chain which are both responsible for the formation of the mesophase. Near room temperature (between 19 and 36°C), MBBA forms a nematic phase, while on cooling, it exhibits a large variety of solid polymorphic modifications [3–6].

Rapid cooling ($\geq 40 \text{ K min}^{-1}$) from the room temperature nematic phase yields an amorphous ground state called C₀, a glassy nematic-like liquid crystal with a glass transition temperature $T_g = 205$ K. Slow reheating of this C_0 glassy state leads to a variety of successive phases: C_1 and C2 are relaxed disordered smectic-like structures, and C_3 and C_4 are crystalline phases [5]. The sequence C_0 to C4 corresponds to a gradual molecular ordering occurring by transformations through different metastable stages. At a given temperature between T_g and room temperature, a given phase C_n evolves continuously with time towards the next C_{n+1} phase with a variable relaxation time. This is a reason why each transformation should be examined through a detailed study of its kinetics. Another reason is that the kinetics could provide information about the transformation mechanism.

Slow cooling from the room temperature phase (at a sufficiently moderated rate in order to prevent the

quenching of the nematic phase), successively gives rise to the stable C_6 and then the C_5 crystalline phases [4].

The C₄ phase can transform to the nematic phase via a misunderstood mechanism (some authors report the existence of a plastic like state S [5]) and, a prolonged exposure of the C₆ phase nearly at the melting temperature would yield the C₄ phase after several tens of hours [7].

Figure 1 illustrates the phase diagram including all the previously described phases and the isotropic phase I.

X-ray diffraction measurements and studies of the kinetics of the transformations are a sure means of identifying the different structural modifications. We are now able to reproduce the sequence of phases, provided that the quenching and the various annealing processes are correctly performed.

No detailed structural information about all the different phases was known until a recently published X-ray study [8]. In this work, the authors were able to grow a monocrystal of MBBA on the goniometer head of an automatic diffractometer where they were using a miniature zone melting procedure with a focused IR laser beam to produce a local molten zone. They found a monoclinic structure, space group P2₁, Z = 6 with three independent molecules, and at 110 K: a = 14.908 Å, b = 8.391 Å, c = 18.411 Å, $\beta = 96.40^{\circ}$. The molecular packing was smectic-like, with layers in the direction (001), the thickness of one layer being close to the c parameter of the unit cell. In view of the temperature of the experiment (110 K), the authors assigned the structure to the C₅ phase.

Using a simulation of this structure for a powder diffraction pattern (program PULVERIX [9]) and comparison with our powder measurements, we were able to show that the published data actually correspond to the C_4 structure.

Additional information is also given for the C_3 structure.

^{*} Author for correspondence.

2. Experimental set-up The sample, a viscous nematic fluid at room temperature, is inserted into a Lindemann glass capillary of diameter 0.7 mm and 5 to 8 mm long which can be continuously rotated around the vertical axis of a goniometer in order to average over all orientations perpendicular

Figure 1. Symbolic phase diagram of MBBA at atmospheric

pressure.

to the rotation axis. The X-ray beam (CuK_a, 40 kV, 20 mA, $\lambda_{K_{\alpha}} = 1.54059$ Å) is monochromatized by the (1011) Bragg reflection of a curved quartz monochromator; its divergence is reduced by a set of vertical and horizontal slits which are also able to strip the K_{α2} line.

Because of the complexity of the MBBA phase diagram and in order to perform a time-resolved data collection, the use of a position sensitive detector (PSD) was very helpful. The multidetector was of the gas flow type with a curved anode (INEL CPS120); the sample was in its centre. The X-ray photons scattered by the sample in the equatorial plane were measured over 120°, with an electronic resolution of about 0.03°, the window height being 8 mm. A beam stop allowed stripping of the incident beam. Electronic devices controlled the gas flux and pressure, and the high voltage, discrimination of the incoming pulses, allowing, through delay lines, the determination of the position and the intensity of the detected photons. Data were stored in a 4K multichannel analyser providing a visualization facility and some possibilities for treatment. The diffraction patterns were then stored in a personal computer which was also used to pilot data collections. The instrumental width was about 5 channels (0.15°) FWHM with a nearly gaussian incoming beam shape.

The sample, centred on the axis of a vertical goniometer head, was introduced into a gas flow cryostat [10]. Cold gas (N_2 in our case) from a storage vessel was drawn through a flexible transfer tube and circulated through a heat exchanger using a gas flow pump. Thermal contact with the sample was achieved via helium gas exchange. The sample holder could be rotated from the top of the cryostat. Mylar windows enabled minimization of the attenuation of the incoming and scattered beams and their aperture allowed us to use the curved detector over all its angular range. The temperature was controlled to about 0.1 K. The cryostat was previously maintained at a temperature of about 100 K. To allow rapid quenching of the sample, the sample holder (at room temperature) was introduced into the cryostat chamber at 100 K; during the insertion, the temperature rose to 120 K only and we could anticipate a quenching rate of about 50 K s⁻¹.

In order to modify the effects of texture in the powder due to preferred alignment of the long molecules in the capillary, the room temperature nematic phase was first placed in an external magnetic field of about 1 Tesla outside the cryostat to align the molecules in a plane perpendicular to the capillary axis. After an alignment time of about 5 h, the sample was rapidly introduced into the cryostat. Comparison between patterns with and without preliminary application of the magnetic field showed that the number of observed Bragg peaks was generally higher when the molecules were previously aligned in this way.

All metastable phases were studied in the same way. After quenching of the oriented nematic phase at about 120 K, the sample was annealed for 10 h at 190 K. Then the temperature was increased until it was close to the C_0 to C_1 transition, for example. Because the kinetics of the transformation are faster when the temperature is closer to the temperature of the transition, data collections were repeated until the phase transition appeared and was complete. After a given transformation, the temperature was decreased to 110 K to stabilize the phase and a data collection was performed. All other transformations were made in the same way from the lowest temperature to room temperature in order to obtain the C_2 , C_3 and C_4 phases according to the transformation temperatures indicated in figure 1.

Calibration of the detector with a powder sample of well-known lattice parameters allows non-linearities of the detector response [11] to be taken into account.

3. Results

3.1. The C_4 phase

The X-ray diffraction pattern of the 'oriented' C_4 phase registered at 110 K can be compared with the pattern simulated from the known structure using the PULVERIX program (see figure 2 (*a*), (*b*) and (*c*). (Comparison with the C_5 phase is also shown in figure 2 (*d*).) The measured and calculated peak positions for the C_4 phase are very similar considering the spectrometer resolution. Differences appear in the intensities: (i) the measured peaks at low indices have a lower intensity, probably due to the effect of orientation, (ii) the peaks with high indices in the

simulated powder pattern have greater intensities due to the fact that no correction is applied for the Debye-Waller factor. The positions of the peaks for the two patterns up to 50° are compared in table 1. They generally differ from each other from a maximum of 0.05°. Table 1 also shows the observed and calculated intensities. Results (Icalc 2) and (Icalc 1) (see table 1) correspond to calculation with and without hydrogen atoms, respectively. To take the hydrogen atoms into account, we have calculated their coordinates assuming that they are in standard positions. We can see that almost all the peaks with significant calculated intensities can be found in the observed data. A few exceptions are encountered: Bragg peaks (011), (201), $(012), (30\overline{1}), (31\overline{1}), (122), (40\overline{1}), (412), (32\overline{4}),$ for example, are not observed, probably owing to the orientation effect. In table 1, all the calculated peaks are displayed in the 4° to 35° angular range. From 35° to 50°, only the peaks with intensities greater than 2.0 are noted in table 1, but, due to the lack of Debye-Waller corrections, calculated values are somewhat over-estimated. Table 2 reports the scattering angles and peak intensities for the C_5 phase for comparison.

A refinement of the cell parameters has been performed using the program DICVOL91 [12]. Table 3 shows the resulting cell parameters with 20, 30 and 50 peaks. De Wolff (M) [13] and Smith (F) [14] figures of merit are, respectively, $[M(20) = 18 \cdot 2, F(20) = 48 \cdot 7]$, $[M(30) = 14 \cdot 8, F(30) = 51 \cdot 1], [M(50) = 8 \cdot 8, F(50) =$ $36 \cdot 2].$

Dynamical properties of the lattice vibrational modes of the C_4 phase have also been studied using Raman experiments and energy calculations. The program WMIN of BUSING [15] was used for this purpose. It consists in finding the minimum energy of molecular interactions from atom-atom potentials. For the calculation, we have chosen 6-exp potentials and have supposed that the molecules are rigid. Electrostatic interactions have not been taken into account. Hydrogen atoms with bond lengths of 1.08 Å are presumed to lie in the plane of the rigid phenyl groups, and for the aliphatic chains, to form approximately regular tetrahedra.

The values of the potential parameters are given by Williams [16, 17] (second column of table 4). Calculations were performed assuming that the interatomic vectors point into a sphere of 10 Å radius and the vectors of the

Figure 2. Comparison between observed (a) and calculated (b) and (c) X-ray powder diffraction patterns of the C₄ phase, and the observed pattern (d) of the C₅ phase in the range [0, 35] degrees in 2θ . Results of calculations (b) and (c) proceed from the PULVERIX program for the C₄ phase. In (c) the hydrogen atoms have been taken into account, while in (b) they have not. Intensities have been scaled to the (310) peak intensity.

hkl

213

121

022

114

12-2

 2θ calc

22.52

22.68

23.31

23.49

23.8

 2θ obs

22.54

22.69

23.31

23.5

23.83

I calc 1

31.6

193-7

10

8.6

2.9

I calc 2

35.1

221.5

15.5

1.9

12

I obs

25.8

179.2

10.9

2.6

26.2

21.2

Table 1. Comparison of the calculated and observed diffraction angles 2θ and intensities for the C4 phase 2θ calc are the calculated angles from the known structure by program PULVERIX. 2θ obs are the observed angles from the powder diffraction data. I calc 1 are the calculated peaks intensities from the structure without the hydrogen atoms. I calc 2 are the same with the hydrogen atoms in standard positions. I obs are the observed intensities. The intensities are normalized to the intensity of the (310) peak.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ar	are normalized to the intensity of the (310) peak.					312	23.87		10	11.5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	hkl	2θ calc	20 obs	I cale 1	I calc 2	Lobs	- 40-1 204	23.96 23.96	23.99	34·4 0·7	36·7 0·5	36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							- 400	24.01		19-4	40.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	001	4.83	4.82	1434	950-3	524	21-4	24.13		2.2	1.3	
	100	5.96	5-99	11.5	207.4	7.7	005	24.3	24.3	5.7	5.1	28.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-1	7.24	7.24	126-3	89.4	7.4	31-3	24.31		5.7	9.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	8.08	8.09	246	220.7	63.5	122	24.35		15.8	19.5	
$ 10-2 10.78 10.76 145 187.5 38.4 10.5 24.38 44 1.7 \\ 101 11.59 30 83.4 303 24.40 24.39 5.6 74.5 41.2 \\ 102 11.91 11.92 120.5 147.9 38.4 22.1 24.58 46 5.4 \\ 100 12.11 12.13 27.3 43.6 4.4 30.4 25 0.4 0.7 0.6 \\ 110 12.11 12.13 27.3 43.6 4.4 30.4 25 0.4 0.7 0.6 \\ 110 12.11 12.79 12.79 45.9 46.9 8.7 221 25.11 38.7 522 \\ 111 13.29 13.31 93.3 85.7 61.6 105 25.7 3.6 7.3 \\ 101 33.7 11.5 9.9 22.2 25.75 25.75 22.4 33.7 33.1 \\ 102 14.31 38.7 83.9 0.23 25.75 5.7 8.5 \\ 103 14.51 14.53 5.7 4.7 31.6 20.5 25.9 125.88 2.9 16 8.3 \\ 20-2 14.52 1.4 0.6 12.3 26.08 26.07 14.3 16.2 20.5 \\ 10.3 14.51 14.53 5.7 4.7 31.6 20.5 25.9 125.88 2.9 16 8.3 \\ 20-2 14.52 1.4 0.6 12.3 26.08 26.07 14.3 16.2 20.5 \\ 10.3 15.07 0.7 0.0 41.1 26.23 3.2 3.9 \\ 11.2 15.09 15.09 6.2 8.5 40.2 214 26.23 0.3 0.8 \\ 210 15.95 15.98 502 63.1 45.9 410 26.28 0.8 2 \\ 210 15.95 15.98 502 63.1 45.9 410 26.28 0.8 2 \\ 210 15.95 15.98 502 63.1 45.9 410 26.62 0.9 19 \\ 21-1 16.28 16.31 54.5 59.7 48.8 313 26.65 12.9 15.1 \\ 103 16.31 1.4 1.1 40.3 26.71 7 12 \\ 111 7/06 17.09 13.7 32.2 12.3 222 26.76 26.76 43.7 48.1 32.4 \\ 20.3 17.76 0.4 0.2 123 26.83 20.5 22.2 \\ 21.0 17.76 0.4 0.2 123 26.83 20.5 22.2 \\ 21.0 13.16.31 1.4 1.1 40.3 26.71 7 12 \\ 21.1 17.06 17.09 38.7 32.2 12.3 222 26.76 26.76 43.7 48.1 32.4 \\ 20.3 17.76 0.4 0.2 123 26.83 20.5 22.2 \\ 10.3 16.31 1.4 4.1 1 40.3 26.71 7 12 \\ 21.2 17.97 17.98 203 194.4 124.8 41.2 27.09 1.9 2.8 \\ 21.2 17.97 17.98 203 194.4 124.8 41.2 27.09 1.9 2.8 \\ 10.4 19.6 1.9 3.8 3.8 4.3 22.3 27.76 2.3 2.3 \\ 23.0 17.96 1.4 0.4 0.4 0.4 \\ 11.5 27.84 2 4.4 1.4 2.8 \\ 10.4 19.6 1.9 0.0 0 \\ 32.1 27.96 1.18 10.1 \\ 14. 2.8 \\ 10.4 19.4 19.4 10.4 0.4 \\ 11.5 27.84 1.4 1.7 \\ 10.4 20.94 1.6 1 0 0.4 \\ 24.2 28.85 10.0 1.5 \\ 11.8 9.7 \\ 11.3 194.5 19.48 28.6 39.0 45.9 21.5 28.67 \\ 27. 23 2.3 2.3 \\ 20.1 19.44 14 21.9 \\ 0.0 0 32.1 27.96 11.8 9.7 \\ 23.2 12.9 13.6 1.7 \\ 13.2 12.2 12.8 13.5 0.7 \\ 14.4 2.17 \\ 20.4 21.9 2.117 61.8 33.3 68.4 412 2.9 \\ 29.26 2.6 0.6 0.4 \\ 19.2 2.1 2.2 13 8.6 8.8 2.2 \\ 21.4 2.9 4 29.94 2.9 94 3.7 7 8 \\ 31.4 \\ 20.4 2.12 2.2 13 8.6 82 2.$	002	9.66	9.64	43	40.5	40	220	24.36		12.9	19.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-2	10.78	10.76	145	187.5	38-4	10-5	24.38		4.4	1.7	
$ \begin{array}{ccccccccccccccccccccccccccccccc$	011	11.59		30	83-4		303	24.40	24.39	5.6	74.5	41.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	102	11.91	11.92	120.5	147.9	38.4	22-1	24.58		4.6	5.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	11.94		1.4	19.2		40-2	24.89		0.7	0.6	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	12.11	12.13	27.3	43-6	4-4	30-4	25	_	0-4	0.7	
	20-1	12.37	12.35	21.5	42.9	3.4	40-1	25.04	25.09	35.8	39.2	37.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-1	12.79	12.79	45.9	46-9	8.7	221	25.11		38.7	52.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	111	13.29	13-31	93.3	85.7	,61·6	105	25.7		3.6	7-3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201	13-37		11.5	9.9		22-2	25.75	25.75	22.4	33.7	33-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	012	14-31		38.7	83.9	_	023	25.75		5.7	8-5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	003	14-51	14.53	5.7	4.7	31.6	20-5	25.91	25.88	2.9	1.6	8.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20-2	14.52		1.4	0.6		12-3	26.08	26.07	14.3	16-2	20.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-3	15-07		0.7	0.0		41-1	26.23		3.2	3.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-2	15.09	15.09	6.2	8.5	40.2	214	26.23		0.3	0.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	15.93	15.98	50.2	63.1	45.9	410	26-28		0.8	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	15.95		14	17.6		015	26.55		1.6	1.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202	16.2		1	1.7		11-5	26.62		0.9	1.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-1	16.28	16.31	54.5	59.7	48.8	313	26-65		12.9	15.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	16.31		1.4	1.1		40-3	26.71	a - -	7	12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	211	17-06	17.09	38-7	32-2	12-3	222	26.76	26.76	43.7	48-1	32.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20-3	17.76		0.4	0-2		123	26-83	27.02	20.5	22.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	17.95	17.00	15.8	37.4	104.0	402	26.94	27.03	4.3	4.1	7.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-2	17.97	17.98	203	194.4	124.8	41-2	27.09		1.9	2.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	013	17.97		37-3	45.3		51-4	27.19		0	0.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30-1	18.00	10.44	12.9	14.4	4.2	411	27-23		0.1	0.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	18.42	18.44	4.5	3.8	4.3	22-3	27.10		2.3	2.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	301	19.11		0.4	0.4		220	27.04	27.02	100	294.1	106.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	19.30		1.7	1.5		320	27.06	21.92	199	204.1	190.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.2	19.39		14	21.0		304	27.90		10	9.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113	19.44	10.48	1 4 28.6	30.0	45.0	21.5	28.04		1.4	7.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.4	19.45	19.40	11.5	10.2	43	205	28-04		3.1	4.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203	19.85	19.85	11.5	0.6	3	321	28.66	28.71	132	177	158.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-3	20.7	1705	1.6	0.6	5	30-5	28.67	2071	2.7	2.3	1504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310	20.85	20.89	1000	1000	1000	41-3	28.78		1.4	1.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	20.94	-0.07	1.6	1	1000	024	28.85		10.2	14.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31-1	20.95		73	66-6		32-2	28-88	28.86	18	19.9	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	020	21.16	21.17	691	837.3	684.4	412	29		9.5	15.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	302	21.36		1.6	2.1		12-4	29.03		2.4	4.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20-4	21.65		0.3	0.2		223	29.17		3	1.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	021	21.71	21-73	149	128.1	71.7	10-6	29.21	29.24	3	7.4	23.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30-3	21.84		2.6	5.2		40-4	29.26		2.6	2.9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	311	21.87	21.89	433	391.5	441.9	006	29.26		0.6	0.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	22		0	5		403	29.56	29.63	12.8	15.2	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014	22.12	22.13	8-6	8.2	22.8	124	29.94	29.99	3	7.4	8
11-422·341·41·731430·000·10·412-122·3922·3941·651·617·550030·142·47	31-2	22.16		11.5	9.4		50-1	29.98		0.7	0.8	
12-1 22.39 22.39 41.6 51.6 17.5 500 30.14 2.4 7	11-4	22.34		1.4	1.7		314	30.00		0.1	0.4	
	12-1	22.39	22.39	41.6	51.6	17.5	500	30.14		2.4	7	

Table 1 (continued).

hkl	2θ calc	2θ obs	I calc 1	I calc 2	I obs	hkl	2θ calc	2θ obs	I calc 1	I calc 2	I obs
322	30.24		6.6	7.7		324	35.36		4.7	5.9	
215	30.33	30.31	2.3	1.4	12	13-3	35.52		1.7	2.1	
20-6	30.4		3.3	3.9		11-7	35.82		0.6	1.5	
22-4	30.45	30.43	1.7	1.2	3.3	51-4	35.83	35.87	2.6	2.4	3.7
106	30.56		0	0.4		32-5	35.91		4	4.5	
32-3	30.59		0.7	1.5		232	36-04		9.5	10	12.6
31-5	30.63	30.64	1.6	1.0	2.4	133	36.09	36.07	13.8	13.3	
50-2	30.64		0.7	0-8		12-6	36.35		1.9	0.9	
501	31.08		0.1	0		600	36.35		0	1.7	
11-6	31.13		0.9	1.6		405	36.36	36-37	0.6	0.2	2.7
41-4	31.18	31-19	3.3	2.6	8.6	42-4	36.39		0.6	0.5	
016	31.18		0.3	0.1		026	36.39		2.4	2.9	
413	31-46	31.54	6.7	6.7	3.7	423	36.63		10.3	10.4	
51-1	31.86	31.85	3.7	2.9	4.2	513	36.73	36.71	3.6	5	
305	32.00		1.9	2.2		23-3	36.81		18	19.3	15.3
510	32.01	32.06	5.9	7.3	12.9	330	36.9	36.89	33.7	37.3	32.8
50-3	32.05		4.6	5.1		33-1	36.96		5.9	8.2	
42-1	32.17		2.6	1.3		126	37-47		6.4	6.5	
224	32.17		7.5	11.6		331	37.52	37.50	40-7	48 ·1	20.8
420	32.21	32.25	3.4	5.2	10.9	52-2	37.53		5.9	6	
21-6	32-26		1	0.6		034	37.67		0.9	0.9	
031	32.35		0-4	1.3		33-2	37.69	37.66	12	10.4	17.6
40-5	32.39		1	1.3		60-3	37.72		5.2	5.5	
116	32-41		1.1	1.7		316	37.88		4	5.6	
025	32.44		2	2.1		521	37.91		2.1	3.6	
51-2	32.48	32.51	11.6	10.9	10	233	37.91	37.91	8.3	11.1	8.3
12-5	32.50		0.8	1		504	37.95		1	0-4	
323	32.52		3-4	2.9		610	37.95		1.4	0.3	
130	32.55		1.6	2.2		415	37.95		6.4	7-3	
30-6	32.72		1.1	2.4		611	38.82	38.82	13.9	13.2	7.9
404	32.74		0.4	0.8		23-4	38.94		2.7	2	
502	32.76		2.3	2-4		42-5	39.02		7.5	4-9	
13-1	32.82		2.1	2.4		32-6	39.3		1.3	2.8	
42-2	32.89		1.1	1		424	39-31	39.31	5.2	5.7	4.2
511	32.91	32.86	5.6	4.5	7.6	514	39.49	39.45	6.4	9.6	8.5
206	32.96		3.4	2-1		226	39.50		3.3	2-4	
32-4	32.97		7.6	8.8		20-8	39.9	39.85	8.6	12.6	20
421	33.00		3.9	3.5		234	40.34		4.3	3.7	
131	33.03	33.04	20.6	28-7	18.4	612	40.3	40.31	6.3	5.8	7.9
032	33.47		0.6	0.7		52-4	40.52	40.55	8.5	8.9	5.3
125	33.52	32.52	0.1	0.1	6.2	603	40.9	40.93	4.6	5	6.2
22-5	33.69	33.62	4.3	4.8	2.4	43-2	40.94		1.9	2.4	
315	33.78		0.7	0.4		431	41.03		4.7	5	
51-3	33.83		4.2	4.5		523	41.33	41-31	5	6	4.9
13-2	33.83	33.83	5.5	5.3	6.2	416	41·79		4.4	4.8	
10-7	34.13		0.1	0.1		118	42.01	42-04	3.6	4.4	3.4
50-4	34.14		0.6	0.9		317	42.24		2.6	2.3	
41-5	34.15		2.6	3.6		62-1	42.25	42.23	4.6	4.1	1.9
132	34-23		2.6	2.4		613	42-35	42.37	5.4	4.6	2.7
230	34.24	34.27	5.2	4.7	6.6	425	42.44		3.7	4.2	
007	34-28		1.6	2.5		208	42 62		1.6	2.1	
42-3	34.32		0.3	0.3		62-2	42.65	42.59	3.7	5.3	1.3
23-1	34-4		7	6.8		31-8	43-07	42.96	5.3	5.7	5.3
31-6	34.47		1.7	1.7		61-5	43.18	43.18	10-2	11	7.6
414	34.48		8.9	7.5	8.5	621	43.24		13.5	16.7	
422	34.50	34.53	0.1	0.1		041	43-38		7.2	5-8	
512	34-51		1.3	1.1		33-5	43.48		3.9	5.3	
216	34.7		0.9	0.7		218	44.03		0.6	0.6	
231	34.8		3.3	3.2		40-8	44.12	44.03	9.9	11.9	10.8
20-7	35.08	35.08	3.9	4.7	6	10-9	44.25	44.21	5.3	5.4	9.6
503	35.09	ar	1	1.2	a =	60-6	44.53		0.3	0.1	
23-2	35.27	35-27	18	15.6	3.7	009	44.53	44.51	11.6	14.7	18.7
033	35.27		6.3	6.6		14-2	44.54		9	8.3	

hkl 2θ calc 2θ obs I cale 1 I calc 2 I obs 53-2 44.87 44.87 12.3 5.3 6.4 22-8 45.60 10.5 10.89.2 45.62 11-9 45.63 12.1 22-1 52-6 45.65 1 0.6109 45.68 8.2 8.5 45.70 24-2 3.4 $2 \cdot 8$ 14-3 45.9 2.9 3.1 46.22 21-9 46.27 3 3.2 5.2 46.36 3.9 3.8 143 327 46.39 4 4.9 46.41 4.3 4.4 434 7 71-4 46.46 46.46 6.7 7.5 46.49 8.3 10.6 623 47.02 340 47.07 10.3 12.8 6.3 34-1 47.07 3.6 3.1 341 47.53 8 8.5 9.9 31-9 47.65 47.64 8.6 8.5 3.8 47.67 34-2 3 720 3-1 4.6 48.11 713 48.25 48.26 3.8 4.3 6.3 144 4.9 4.7 48.37 48.57 342 8.6 8.1 51-8 48.69 1.748.64 $2 \cdot 3$ 3.6 63-1 49.01 $2 \cdot 1$ $2 \cdot 1$ 630 49.18 49.24 2.4 1.9 1 3.1 2.9 0.742-8 49.43 49.41 029 **49**.8 6.2 7.6 631 49.89 18.518.8 49.92 440 2.3 3

Table 1 (continued).

Table 2.	Scattering angles and observed intensities for the	C_5
	phase.	

2θ obs	I obs	2θ obs	I obs
5.73	1000	23.3	8
10.65	81	23.75	7
13.21	183	24.44	541
15.8	73	24.93	52
18.36	17	27.21	22
18.94	46	28.46	52·2
19.07	33	28.86	46.2
19-34	114	29.22	61-3
19.62	333	29.49	77.9
20.39	266	29.79	74.5
20.84	641	30.59	31.8
20.99	236	31.25	19.2
21.36	54	31.51	42
22.02	52	32.35	14.7
22.24	28	34.66	4.7
22.59	56	34.9	4.2
22.95	76	35.8	9.5
23.12	11	36.16	13.8

Table 3. Cell parameters for the C4 phase from the 'DICVOL91' refinements versus the number of peaks
taken into account, and the related figures of merit M and F.

N peaks	a/Å	b/Å	c/Å	βI°	М	F
20 30	14-897 (0-014) 14-891 (0-009)	8-376 (0-008) 8-386 (0-003)	18·409 (0·013) 18·411 (0·007)	96·56 (0·09) 96·51 (0·04)	18·2 14·8	48·7 51·1
50	14.872 (0.007)	8-388 (0-002)	18.415 (0.007)	96.5 (0.03)	8.2	36.2

Table 4. Initial and final potential parameters for the C₄ phase from a 'WMIN' refinement. (van der Waals): $E_{jk}^{W} = -A_{jk}/r_{jk}^{6}$; (repulsion): $E_{jk}^{R} = B_{jk} \exp(-C_{jk}r_{jk})$.

	Initial parameters	Final parameters	Relative variations/10 ⁻²
$A_{C-C}/\text{kcal}\bar{A}^6\text{mol}^{-1}$	583-13	577-29	1.0
A0-0	268.55	285-18	6.2
A _{N-N}	329.45	389.74	18-3
A _{H-H}	32.60	32.90	0.9
$B_{C-C}/kcal mol^{-1}$	88370.7	88107.1	0.3
<i>B</i> ₀₋₀	54986.6	56640.2	3.0
B_{N-N}	60833.9	66392-3	9.1
B _{H-H}	2861.1	2875.1	0.5
$C_{C-C}\bar{A}^{-1}$	3.60		
$C_{0=0}$	3.96		
C _{N-N}	3.78		
$C_{\rm H + NH}$	3.74		

reciprocal lattice into a sphere of 0.3 Å^{-1} radius. At the convergence, the lattice parameters *a*, *b*, and *c* have been respectively changed by 2.3, 1.4, and 0.9 per cent and the monoclinic angle by -1.1 per cent. The molecular centres of mass are translated by no more than 0.1 Å and the molecular rotations are less than 2°. These results are relatively satisfactory for such a phase. The calculated energies are $E^{W} = -48.2 \text{ kcal mol}^{-1}$ and $E^{R} = 19.0 \text{ kcal mol}^{-1}$ giving a total lattice energy $E^{T} = -29.2 \text{ kcal mol}^{-1}$.

We have also tested the potential parameters from a refinement of the A_{ij} and the B_{ij} coefficients. The C_{ij} parameters have been kept fixed because of their dependence on the B_{ij} parameters. The final values of the parameters and their related variations are displayed in table 4. The carbon and hydrogen parameters vary less than the oxygen and nitrogen parameters. This is probably due to the fact that the coulombic interactions have been neglected. Nevertheless, there are only one oxygen and one nitrogen atom in the 41 atoms of the molecule and we can suppose that their contribution to the total potential is negligible. This is shown by the minimum final energy -29.3 kcal mol⁻¹ which is close to that obtained with the starting parameters (-29.2 kcal mol⁻¹).

The measured Raman frequencies (see figure 3) for the C_4 phase are compared with the calculated values in table 5. We can obtain 33 optical modes which are all Raman active, but many of them are not experimentally resolved (see figure 3).

3.2. The C_3 phase

Annealing of the C_0 phase at 240 K gives the C_3 phase. When the transformation is completed, a further annealing at 270 K produces the C_4 phase. The structure of the C_3

Figure 3. Raman spectrum of the C₄ phase.

phase not being directly correlated with the C_4 phase, the structure does not appear obvious owing to the texture of the sample.

The collected data for the C₃ phase at 110 K have been used to define the cell parameters. From the powder diffraction pattern shown in figure 4, the first 23 peaks have been used with the program DICVOL91. We have obtained a monoclinic cell with parameters: $a = 14 \cdot 119(0.010)$ Å, b = 6.763(0.006) Å, c = 16.067(0.009) Å, $\beta = 100.83(0.06)^{\circ}$ which corresponds to a volume of V = 1506.9 Å³. The figures of merit are: M(23) = 6.5, F(23) = 12.0. The volume of the C₄ phase being 2282.2 Å³ with Z = 6, the cell of the C₃ phase contains four molecules (Z = 4, V = 1521 Å³). Table 6 gives the indices and the intensities of the observed Bragg peaks.

Table 5.Calculated (Calc) and observed (Exp) Raman frequencies for the C4 phase and experimental values of half
width at half maximum (HWHM).

Exp/cm ⁻¹	Exp HWHM/cm ⁻¹	Calc/cm ⁻¹	Exp/cm ⁻¹	Exp HWHM/cm ⁻¹	Calc/cm ⁻¹
13.2	1.6				67.5-67.6
16.8	1.4				69.4
		19.9	73.1	15	75.4–76.7
21.9	4.1				78.5-78.8
		24.6			83.3
27.2	5.3				87.7
		29.2	9 2·1	18.3	94.2
33.6	4.6	33.1-33.4			96
		38-2			98-1
42.4	5.2	43.3			100.3
44.5	4.1	45.5-46.6	106-1	9.7	104.8
		48.2			109
52.2	6.4	52.4-53.1	114.7	13.6	113.8
		55.1			116.3
59-4	8.4	59.6	132.9	19.6	
		62.2-62.4			

Figure 4. X-ray powder diffraction pattern of the C₃ phase.

4. Conclusions

We are able to show that the C_4 phase of MBBA corresponds to the structure that had been previously determined by Boese *et al.* [8], and wrongly attributed to the C_5 phase. This result has been obtained by comparing the results from our powder diffraction studies with a

simulated pattern given by this structure. This has been achieved by a precise knowledge of thermal treatments and particularly by the ability, using a multidetector, to follow the progress of the transformations kinetics. It is obvious that the procedure employed (in [8]) to grow the monocrystal has been done in such a way that the quenched C₀ phase has been obtained first and then transformed to the 'more stable' C4 phase by annealing. It remains for the structure of the C5 and C6 phases to be determined. These phases have been modelled: (i) from results of energy calculations using atom-atom potentials from series of mesomorphic fluorinated derivatives [18, 19] and (ii) from a structure based on that of EBBA [4]. Simulations of powder diagrams of these structures do not coincide with our powder results, and it would be helpful to perform other measurements using the method employed to grow low temperature monocrystals. It seems that this could be achieved by first, growing the C_6 phase at a temperature near the nematic to C6 transformation, and then lowering the temperature to the C_5 phase, since this transition appears to be nearly second order.

Table 6. Observed $(2\theta \text{ obs})$ and calculated $(2\theta \text{ calc})$ diffraction angles for the C₃ from the DICVOL91 program and the corresponding observed intensities.

hkl	2θ calc	2θ obs	I obs	hkl	2θ calc	2θ obs	Iobs
001	5.59	5.56	780.6	41-1	28.51	28.51	7.5
002	11.2	11.14	90.7	41-2	29.24	29.15	44.5
10-2	11.81	11.79	26.2	22-1	29.44	29.45	165-5
200	12.76	12-75	19.7	221	30.38		
011	14.24	14.23	11.2	411	30.41	30.44	26.5
110	14.56	14.49	5.9	22-2	30.61	30.69	13.3
111	16.04	16.05	7.4	023	31.42	31.42	11.1
003	16-84	16.78	10.9	12-3	31.43		
10-3	16.85			50-2	32.11	32.11	21.8
210	18.31	18.31	200.1	412	32.87	32.95	6.5
202	18.54	18.52	123.7	205	33.3	33-25	9.1
103	19.12			41-4	33.73	33.74	27.3
112	19.14	19-13	366.5	51-1	34.39	34.26	2.9
20-3	19.15			510	34-94	34.99	1.3
211	19-86	19.96	24.6	32-3	35.3	35.37	11.6
21-2	20.21	20.17	32.6	502	36-26	36-21	3.6
30-2	20.34	20.36	75.7	016	36.63		
013	21.39			21-6	36.65	36.66	2.4
11-3	21.39	21-44	1000	420	37-11	37.02	6
30-3	23.09	23.05	456	305	37.37		
113	23.24	23.23	71.8	42-2	37.37	37.41	5.4
20-4	23.74	23.73	164.9			37.73	2.8
31-2	24.26	24.27	7.4	60-1	38-25	38.23	14.9
400	25.68	25.67	28.4	206	38.80		
021	26.94	26.91	17.7	42-3	38.83	38.82	16.01
120	27.12	27.19	24.9	224	28-83		
10-5	27.76	27.78	153.5	60-3	39.5	39.5	39.7
114	27.93			130	40.51	40.54	10.8
121	27.96			61-1	40.59		
303	27.96	27.98	3.1	61-2	40.78	40.85	3.5
				11-7	41.53	41.53	8.2

References

- CHANDRASEKHAR, S., Liquid Crystals (Cambridge University Press), p. 342.
- [2] DE JEU, W. H., 1980, Physical Properties of Liquid Crystalline Materials (Gordon & Breach), p. 133.
- [3] DOLGANOV, V. K., KROO, N., ROSTA, L., SHEKA, E. F., and SZABON, J., 1985, *Molec. Crystals liq. Crystals*, 127, 187.
- [4] ROSTA, L., KROO, N., DOLGANOV, V. K., PACHER, P., SIMKIN, V. G., TÖRÖK, GY., and PEPY, G., 1987, Molec. Crystals liq. Crystals, 144, 297.
- [5] PEPY, G., FOURET, R., MORE, M., and ROSTA, L., 1989, *Physica Scripta*, **39**, 485.
- [6] FOURET, R., ELOUATIB, A., GORS, C., MORE, M., PEPY, G., and ROSTA, L., 1991, *Phase Transit.*, 33, 209.
- [7] BELUSKIN, A. V., DOLGANOV, V. K., NATKANIEC, I., and SIMKIN, V. G., 1987, Molec. Crystals liq. Crystals, 15, 187.
- [8] BOESE, R., ANTIPIN, M. YU., NUSSBAUMER, M., and BLÄSER, D., 1992, Liq. Crystals, 12, 431.
- [9] YVON, K., JEITSCHKO, W., and PARTHE, E., 1977, J. appl. Crystallogr., 10, 73.

- [10] ODOU, G., and NAVIEZ, D., 1987, Spectra 2000, No. 137, Vol. 17.
- [11] EVAIN, M., DENIARD, P., JOUNNEAUX, A., and BREC, R., 1993, J. appl. Crystallogr., 26, 563.
- [12] BOULTIF, A., and LOUËR, D., 1991, J. appl. Crystallogr., 24, 987.
- [13] DE WOLFF, P. M., 1968, J. appl. Crystallogr., 5, 108.
- [14] SMITH, G. S., and SNYDER, R. L., 1979, J. appl. Crystallogr., 12, 60.
- [15] BUSING, W. R., 1981, Acta crystallogr. A, 28, 252.
- [16] WILLIAMS, D. E., and HOUPT, D. J., 1986, Acta crystallogr.
 B, 42, 28.
- [17] WILLIAMS, D. E., and Cox, S. R., 1984, Acta crystallogr, B, 40, 404.
- [18] SEREDA, S. V., TIMOFEEVA, T. V., ANTIPIN, M. YU., and STRUCHKOV, YU. T., 1992, *Liq. Crystals*, 11, 839.
- [19] SEREDA, S. V., TIMOFEEVA, T. V., and STRUCHKOV, YU. T., 1991, Soviet Phys. Crystallogr., 36, 446.