This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


## Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713926090

Crystal structure of 4-methoxybenzylidene-4'-n-butylaniline (MBBA) The $\mathrm{C}_{4}$ and $\mathrm{C}_{3}$ phases<br>M. More ${ }^{\text {a }}$; C. Gors ${ }^{\text {a }}$; P. Derollez ${ }^{\text {a }}$; J. Matavar ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Laboratoire de Dynamique et Structure des Matériaux Moléculaires, (C.N.R.S. URA 801) U.S.T.L., Villeneuve d'Ascq Cedex, France

To cite this Article More, M. , Gors, C. , Derollez, P. and Matavar, J.(1995) 'Crystal structure of 4-methoxybenzylidene-4'-n-butylaniline (MBBA) The $\mathrm{C}_{4}$ and $\mathrm{C}_{3}$ phases', Liquid Crystals, 18: 2, $337-345$
To link to this Article: DOI: 10.1080/02678299508036630
URL: http://dx.doi.org/10.1080/02678299508036630

## PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# Crystal structure of 4-methoxybenzylidene-4'-n-butylaniline (MBBA) The $\mathrm{C}_{4}$ and $\mathrm{C}_{3}$ phases 

by M. MORE*, C. GORS, P. DEROLLEZ and J. MATAVAR<br>Laboratoire de Dynamique et Structure des Matériaux Moléculaires, (C.N.R.S. URA 801) U.S.T.L., 59655 Villeneuve d'Ascq Cedex, France

(Received 14 September 1993; in final form 20 May 1994; accepted 16 June 1994)


#### Abstract

Precise knowledge of thermal history (quenching and annealing) of the phases of the quenched liquid crystal MBBA has permitted us, from powder X-ray data, to attribute unequivocally a previously published structure to the $\mathrm{C}_{4}$ metastable phase. Lattice parameters of the $\mathrm{C}_{3}$ phase are also proposed.


## 1. Introduction

MBBA (4-methoxybenzylidene-4'-n-butylaniline) is a well-known thermotropic mesomorphic material which is considered as a model compound for liquid crystal studies [1,2].

The elongated molecule has the formula

$$
\mathrm{CH}_{3}-\mathrm{O}-\Phi-\mathrm{CH}=\mathrm{N}-\Phi-\mathrm{C}_{4} \mathrm{H}_{9}
$$

where $\Phi$ is a phenyl group; it contains a central semi-rigid fragment and a more flexible alkyl chain which are both responsible for the formation of the mesophase. Near room temperature (between 19 and $36^{\circ} \mathrm{C}$ ), MBBA forms a nematic phase, while on cooling, it exhibits a large variety of solid polymorphic modifications [3-6].

Rapid cooling ( $\geqslant 40 \mathrm{~K} \mathrm{~min}^{-1}$ ) from the room temperature nematic phase yields an amorphous ground state called $\mathrm{C}_{0}$, a glassy nematic-like liquid crystal with a glass transition temperature $T_{\mathrm{g}}=205 \mathrm{~K}$. Slow reheating of this $\mathrm{C}_{0}$ glassy state leads to a variety of successive phases: $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are relaxed disordered smectic-like structures, and $\mathrm{C}_{3}$ and $\mathrm{C}_{4}$ are crystalline phases [5]. The sequence $\mathrm{C}_{0}$ to $\mathrm{C}_{4}$ corresponds to a gradual molecular ordering occurring by transformations through different metastable stages. At a given temperature between $T_{\mathrm{g}}$ and room temperature, a given phase $\mathrm{C}_{n}$ evolves continuously with time towards the next $C_{n+1}$ phase with a variable relaxation time. This is a reason why each transformation should be examined through a detailed study of its kinetics. Another reason is that the kinetics could provide information about the transformation mechanism.

Slow cooling from the room temperature phase (at a sufficiently moderated rate in order to prevent the

[^0]quenching of the nematic phase), successively gives rise to the stable $\mathrm{C}_{6}$ and then the $\mathrm{C}_{5}$ crystalline phases [4].

The $C_{4}$ phase can transform to the nematic phase via a misunderstood mechanism (some authors report the existence of a plastic like state $S$ [5]) and, a prolonged exposure of the $\mathrm{C}_{6}$ phase nearly at the melting temperature would yield the $\mathrm{C}_{4}$ phase after several tens of hours [7].

Figure 1 illustrates the phase diagram including all the previously described phases and the isotropic phase I.

X-ray diffraction measurements and studies of the kinetics of the transformations are a sure means of identifying the different structural modifications. We are now able to reproduce the sequence of phases, provided that the quenching and the various annealing processes are correctly performed.

No detailed structural information about all the different phases was known until a recently published X-ray study [8]. In this work, the authors were able to grow a monocrystal of MBBA on the goniometer head of an automatic diffractometer where they were using a miniature zone melting procedure with a focused IR laser beam to produce a local molten zone. They found a monoclinic structure, space group $\mathrm{P} 2_{1}, Z=6$ with three independent molecules, and at $110 \mathrm{~K}: a=14.908 \AA, b=8.391 \AA$, $c=18.411 \AA, \beta=96.40^{\circ}$. The molecular packing was smectic-like, with layers in the direction (001), the thickness of one layer being close to the c parameter of the unit cell. In view of the temperature of the experiment ( 110 K ), the authors assigned the structure to the $\mathrm{C}_{5}$ phase.

Using a simulation of this structure for a powder diffraction pattern (program PULVERIX [9]) and comparison with our powder measurements, we were able to show that the published data actually correspond to the $\mathrm{C}_{4}$ structure.

Additional information is also given for the $\mathrm{C}_{3}$ structure.


Figure 1. Symbolic phase diagram of MBBA at atmospheric pressure.

## 2. Experimental set-up

The sample, a viscous nematic fluid at room temperature, is inserted into a Lindemann glass capillary of diameter 0.7 mm and 5 to 8 mm long which can be continuously rotated around the vertical axis of a goniometer in order to average over all orientations perpendicular to the rotation axis.

The X-ray beam $\left(\mathrm{CuK}_{\mathrm{a}}, \quad 40 \mathrm{kV}, 20 \mathrm{~mA}\right.$, $\lambda_{\mathrm{K}_{\alpha}}=1.54059 \AA$ ) is monochromatized by the ( $10 \overline{1} 1$ ) Bragg reflection of a curved quartz monochromator; its divergence is reduced by a set of vertical and horizontal slits which are also able to strip the $\mathrm{K}_{\alpha_{2}}$ line.

Because of the complexity of the MBBA phase diagram and in order to perform a time-resolved data collection, the use of a position sensitive detector (PSD) was very helpful. The multidetector was of the gas flow type with a curved anode (INEL CPS120); the sample was in its centre. The X-ray photons scattered by the sample in the equatorial plane were measured over $120^{\circ}$, with an electronic resolution of about $0.03^{\circ}$, the window height being 8 mm . A beam stop allowed stripping of the incident beam. Electronic devices controlled the gas flux and pressure, and the high voltage, discrimination of the incoming pulses, allowing, through delay lines, the determination of the position and the intensity of the detected photons. Data were stored in a 4 K multichannel analyser providing a visualization facility and some possibilities for treatment. The diffraction patterns were then stored in a personal computer which was also used to pilot data collections. The instrumental width was about 5 channels ( $0 \cdot 15^{\circ}$ ) FWHM with a nearly gaussian incoming beam shape.

The sample, centred on the axis of a vertical goniometer head, was introduced into a gas flow cryostat [10]. Cold gas ( $\mathrm{N}_{2}$ in our case) from a storage vessel was drawn through a flexible transfer tube and circulated through a heat exchanger using a gas flow pump. Thermal contact with the sample was achieved via helium gas exchange.

The sample holder could be rotated from the top of the cryostat. Mylar windows enabled minimization of the attenuation of the incoming and scattered beams and their aperture allowed us to use the curved detector over all its angular range. The temperature was controlled to about 0.1 K . The cryostat was previously maintained at a temperature of about 100 K . To allow rapid quenching of the sample, the sample holder (at room temperature) was introduced into the cryostat chamber at 100 K ; during the insertion, the temperature rose to 120 K only and we could anticipate a quenching rate of about $50 \mathrm{Ks}^{-1}$.

In order to modify the effects of texture in the powder due to preferred alignment of the long molecules in the capillary, the room temperature nematic phase was first placed in an external magnetic field of about 1 Tesla outside the cryostat to align the molecules in a plane perpendicular to the capillary axis. After an alignment time of about 5 h , the sample was rapidly introduced into the cryostat. Comparison between patterns with and without preliminary application of the magnetic field showed that the number of observed Bragg peaks was generally higher when the molecules were previously aligned in this way.

All metastable phases were studied in the same way. After quenching of the oriented nematic phase at about 120 K , the sample was annealed for 10 h at 190 K . Then the temperature was increased until it was close to the $\mathrm{C}_{0}$ to $C_{1}$ transition, for example. Because the kinetics of the transformation are faster when the temperature is closer to the temperature of the transition, data collections were repeated until the phase transition appeared and was complete. After a given transformation, the temperature was decreased to 110 K to stabilize the phase and a data collection was performed. All other transformations were made in the same way from the lowest temperature to room temperature in order to obtain the $\mathrm{C}_{2}, \mathrm{C}_{3}$ and $\mathrm{C}_{4}$ phases according to the transformation temperatures indicated in figure 1.

Calibration of the detector with a powder sample of well-known lattice parameters allows non-linearities of the detector response [11] to be taken into account.

## 3. Results

### 3.1. The $C_{4}$ phase

The X-ray diffraction pattern of the 'oriented' $\mathrm{C}_{4}$ phase registered at 110 K can be compared with the pattern simulated from the known structure using the PULVERIX program (see figure $2(a),(b)$ and $(c)$. (Comparison with the $\mathrm{C}_{5}$ phase is also shown in figure $2(d)$.) The measured and calculated peak positions for the $\mathrm{C}_{4}$ phase are very similar considering the spectrometer resolution. Differences appear in the intensities: (i) the measured peaks at low indices have a lower intensity, probably due to the effect of orientation, (ii) the peaks with high indices in the

simulated powder pattern have greater intensities due to the fact that no correction is applied for the Debye-Waller factor. The positions of the peaks for the two patterns up to $50^{\circ}$ are compared in table 1 . They generally differ from each other from a maximum of $0.05^{\circ}$. Table 1 also shows the observed and calculated intensities. Results (Icalc 2) and (Icalc 1) (see table 1) correspond to calculation with and without hydrogen atoms, respectively. To take the hydrogen atoms into account, we have calculated their coordinates assuming that they are in standard positions. We can see that almost all the peaks with significant calculated intensities can be found in the observed data. A few exceptions are encountered: Bragg peaks (011), (201), (012), (301̄), (31六), (122), (401̄), (412), (32 $\overline{4})$, for example, are not observed, probably owing to the orientation effect. In table 1, all the calculated peaks are displayed in the $4^{\circ}$ to $35^{\circ}$ angular range. From $35^{\circ}$ to $50^{\circ}$, only the peaks with intensities greater than 2.0 are noted in table 1, but, due to the lack of Debye-Waller corrections, calculated values are somewhat over-estimated. Table 2 reports the scattering angles and peak intensities for the $\mathrm{C}_{5}$ phase for comparison.

A refinement of the cell parameters has been performed using the program DICVOL91 [12]. Table 3 shows the resulting cell parameters with 20,30 and 50 peaks. De Wolff (M) [13] and Smith (F) [14] figures of merit are, respectively, $[\mathrm{M}(20)=18.2, \mathrm{~F}(20)=48.7]$, $[\mathrm{M}(30)=14 \cdot 8, \quad \mathrm{~F}(30)=51 \cdot 1], \quad[\mathrm{M}(50)=8.8, \quad \mathrm{~F}(50)=$ 36.2].

Dynamical properties of the lattice vibrational modes of the $\mathrm{C}_{4}$ phase have also been studied using Raman experiments and energy calculations. The program WMIN of BUSING [15] was used for this purpose. It consists in finding the minimum energy of molecular interactions from atom-atom potentials. For the calculation, we have chosen 6-exp potentials and have supposed that the molecules are rigid. Electrostatic interactions have not been taken into account. Hydrogen atoms with bond lengths of $1.08 \AA$ are presumed to lie in the plane of the rigid phenyl groups, and for the aliphatic chains, to form approximately regular tetrahedra.

The values of the potential parameters are given by Williams [16, 17] (second column of table 4). Calculations were performed assuming that the interatomic vectors point into a sphere of $10 \AA$ radius and the vectors of the

Figure 2. Comparison between observed ( $a$ ) and calculated ( $b$ ) and (c) X-ray powder diffraction patterns of the $\mathrm{C}_{4}$ phase, and the observed pattern ( $d$ ) of the $\mathrm{C}_{5}$ phase in the range $[0,35]$ degrees in $2 \theta$. Results of calculations (b) and (c) proceed from the PULVERIX program for the $\mathrm{C}_{4}$ phase. In (c) the hydrogen atoms have been taken into account, while in (b) they have not. Intensities have been scaled to the (310) peak intensity.

Table 1. Comparison of the calculated and observed diffraction angles $2 \theta$ and intensities for the $\mathrm{C}_{4}$ phase $2 \theta$ calc are the calculated angles from the known structure by program PULVERIX. $2 \theta$ obs are the observed angles from the powder diffraction data. I calc 1 are the calculated peaks intensities from the structure without the hydrogen atoms. I calc 2 are the same with the hydrogen atoms in standard positions. I obs are the observed intensities. The intensities are normalized to the intensity of the (310) peak.

| Table 1. Comparison of the calculated and observed diffraction angles $2 \theta$ and intensities for the $\mathrm{C}_{4}$ phase $2 \theta$ calc are the calculated angles from the known structure by program PULVERIX. $2 \theta$ obs are the observed angles from the powder diffraction data. I calc 1 are the calculated peaks intensities from the structure without the hydrogen atoms. I calc 2 are the same with the hydrogen atoms in standard positions. I obs are the observed intensities. The intensities are normalized to the intensity of the (310) peak. |  |  |  |  |  | $h k l$ | 20 calc | 20 obs | Icalc 1 | I calc 2 | I obs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 213 | 22.52 | 22.54 | 31.6 | $35 \cdot 1$ | 25.8 |
|  |  |  |  |  |  | 121 | $22 \cdot 68$ | 22.69 | 193.7 | 221.5 | 179.2 |
|  |  |  |  |  |  | 022 | 23.31 | 23.31 | 8.6 | 15.5 | 10.9 |
|  |  |  |  |  |  | 114 | 23.49 | 23.5 | 2.9 | 1.9 | $2 \cdot 6$ |
|  |  |  |  |  |  | 12-2 | 23.8 | 23.83 | 10 | 12 | 26.2 |
|  |  |  |  |  |  | 312 | 23.87 |  | 10 | 11.5 |  |
| $h k l$ | 20 calc | $2 \theta$ obs | I calc 1 | I calc 2 | Iobs | 204 | 23.96 |  | 0.7 | 0.5 |  |
|  |  |  |  |  |  | 400 | 24.01 |  | 19.4 | $40 \cdot 9$ |  |
| 001 | 4.83 | 4.82 | 1434 | 950.3 | 524 | 21-4 | 24.13 |  | $2 \cdot 2$ | $1 \cdot 3$ |  |
| 100 | 5.96 | 5.99 | 11.5 | 207.4 | 7.7 | 005 | 24.3 | 24.3 | $5 \cdot 7$ | $5 \cdot 1$ | 28.1 |
| 10-1 | 7.24 | 7.24 | $126 \cdot 3$ | 89.4 | 7.4 | 31-3 | 24.31 |  | 5.7 | 9.6 |  |
| 101 | 8.08 | 8.09 | 246 | $220 \cdot 7$ | 63.5 | 122 | 24.35 |  | 15.8 | 19.5 |  |
| 002 | 9.66 | 9.64 | 43 | 40.5 | 40 | 220 | 24.36 |  | 12.9 | 19.6 |  |
| 10-2 | 10.78 | 10.76 | 145 | 187.5 | 38.4 | 10-5 | 24.38 |  | 4.4 | 1.7 |  |
| 011 | 11.59 |  | 30 | 83.4 |  | 303 | 24.40 | 24.39 | $5 \cdot 6$ | 74.5 | 41.2 |
| 102 | 11.91 | 11.92 | $120 \cdot 5$ | 147.9 | 38.4 | 22-1 | 24.58 |  | 4.6 | $5 \cdot 4$ |  |
| 200 | 11.94 |  | 1.4 | 19.2 |  | 40-2 | 24.89 |  | 0.7 | 0.6 |  |
| 110 | 12.11 | 12.13 | 27.3 | 43.6 | 4.4 | 30-4 | 25 |  | 0.4 | 0.7 |  |
| 20-1 | 12.37 | 12.35 | 21.5 | 42.9 | 3.4 | 40-1 | 25.04 | 25.09 | 35.8 | 39.2 | 37.7 |
| 11-1 | 12.79 | 12.79 | 45.9 | 46.9 | 8.7 | 221 | 25.11 |  | 38.7 | $52 \cdot 2$ |  |
| 111 | 13.29 | 13.31 | 93.3 | 85.7 | . 61.6 | 105 | 25.7 |  | 3.6 | $7 \cdot 3$ |  |
| 201 | 13.37 |  | 11.5 | 9.9 |  | 22-2 | 25.75 | 25.75 | 22.4 | $33 \cdot 7$ | $33 \cdot 1$ |
| 012 | 14.31 |  | 38.7 | 83.9 |  | 023 | 25.75 |  | $5 \cdot 7$ | 8.5 |  |
| 003 | 14.51 | 14.53 | 5.7 | 4.7 | 31.6 | 20-5 | 25.91 | 25.88 | 2.9 | 1.6 | 8.3 |
| 20-2 | 14.52 |  | 1.4 | 0.6 |  | 12-3 | 26.08 | 26.07 | 14.3 | $16 \cdot 2$ | $20 \cdot 5$ |
| 10-3 | 15.07 |  | 0.7 | $0 \cdot 0$ |  | 41-1 | 26.23 |  | $3 \cdot 2$ | 3.9 |  |
| 11-2 | 15.09 | 15.09 | $6 \cdot 2$ | 8.5 | $40 \cdot 2$ | 214 | 26.23 |  | $0 \cdot 3$ | 0.8 |  |
| 112 | 15.93 | 15.98 | $50 \cdot 2$ | 63.1 | 45.9 | 410 | 26.28 |  | 0.8 | 2 |  |
| 210 | 15.95 |  | 14 | 17.6 |  | 015 | 26.55 |  | 1.6 | 1.7 |  |
| 202 | $16 \cdot 2$ |  | 1 | 1.7 |  | 11-5 | 26.62 |  | 0.9 | 1.9 |  |
| 21-1 | 16.28 | 16.31 | 54.5 | 59.7 | 48.8 | 313 | 26.65 |  | 12.9 | 15.1 |  |
| 103 | 16.31 |  | 1.4 | $1 \cdot 1$ |  | 40-3 | 26.71 |  | 7 | 12 |  |
| 211 | 17.06 | 17.09 | 38.7 | $32 \cdot 2$ | 12.3 | 222 | 26.76 | 26.76 | 43.7 | 48.1 | 32.4 |
| 20-3 | 17.76 |  | 0.4 | 0.2 |  | 123 | 26.83 |  | 20.5 | 22.2 |  |
| 300 | 17.95 |  | $15 \cdot 8$ | 37.4 |  | 402 | 26.94 | 27.03 | $4 \cdot 3$ | $4 \cdot 1$ | 7.5 |
| 21-2 | 17.97 | 17.98 | 203 | 194.4 | $124 \cdot 8$ | 41-2 | 27.09 |  | 1.9 | 2.8 |  |
| 013 | 17.97 |  | 37.3 | $45 \cdot 3$ |  | 31-4 | 27.19 |  | 0 | $0 \cdot 1$ |  |
| 30-1 | 18.06 |  | 12.9 | 14.4 |  | 411 | 27.23 |  | $0 \cdot 1$ | 0.6 |  |
| 11-3 | 18.42 | 18.44 | 4.3 | 3.8 | $4 \cdot 3$ | 22-3 | 27.76 |  | $2 \cdot 3$ | $2 \cdot 3$ |  |
| 301 | 19.11 |  | 0.4 | $0 \cdot 4$ |  | 115 | 27.84 |  | 2 | 4.9 |  |
| 212 | 19.36 |  | 1.7 | 1.3 |  | 320 | 27.88 | 27.92 | 199 | 284.1 | 196.6 |
| 004 | 19.39 |  | 0 | 0 |  | 32-1 | 27.96 |  | 11.8 | 9.7 |  |
| 30-2 | 19.44 |  | 14 | 21.9 |  | 304 | 28 |  | 10 | $15 \cdot 1$ |  |
| 113 | 19.45 | 19.48 | 28.6 | 39.0 | 45.9 | 21-5 | 28.04 |  | 1.4 | 2.8 |  |
| 10-4 | 19.65 | 19.65 | 11.5 | 10.2 | 43 | 205 | 28.36 |  | $3 \cdot 1$ | 4.8 |  |
| 203 | 19.85 | 19.85 | 11.5 | 0.6 | 3 | 321 | 28.66 | 28.71 | 132 | 177 | 158.4 |
|  | 20.7 |  | 1.6 | 0.6 |  | 30-5 | 28.67 |  | 2.7 | $2 \cdot 3$ |  |
| 310 | 20.85 | 20.89 | 1000 | 1000 | 1000 | 41-3 | 28.78 |  | 1.4 | 1.7 |  |
| 104 | 20.94 |  | 1.6 | 1 |  | 024 | 28.85 |  | $10 \cdot 2$ | 14.4 |  |
| 31-1 | 20.95 |  | 73 | 66.6 |  | 32-2 | 28.88 | 28.86 | 18 | 19.9 | 21.2 |
| 020 | 21.16 | $21 \cdot 17$ | 691 | 837.3 | 684.4 | 412 | 29 |  | 9.5 | 15.5 |  |
| 302 | 21.36 |  | 1.6 | $2 \cdot 1$ |  | 12-4 | 29.03 |  | $2 \cdot 4$ | $4 \cdot 1$ |  |
| 20-4 | 21.65 |  | 0.3 | 0.2 |  | 223 | 29.17 |  | 3 | $1 \cdot 1$ |  |
| 021 | 21.71 | 21.73 | 149 | 128.1 | 71.7 | 10-6 | 29.21 | 29.24 | 3 | 7.4 | 23.8 |
| 30-3 | 21.84 |  | $2 \cdot 6$ | 5.2 |  | 40-4 | $29 \cdot 26$ |  | 2.6 | 2.9 |  |
| 311 | 21.87 | 21.89 | 433 | 391.5 | 441.9 | 006 | 29.26 |  | 0.6 | 0.4 |  |
| 120 | 22 |  | 0 | 5 |  | 403 | 29.56 | 29.63 | 12.8 | 15.2 | $5 \cdot 2$ |
| 014 | $22 \cdot 12$ | $22 \cdot 13$ | 8.6 | 8.2 | $22 \cdot 8$ | 124 | 29.94 | 29.99 | 3 | 7.4 | 8 |
| 31-2 | $22 \cdot 16$ |  | 11.5 | 9.4 |  | 50-1 | 29.98 |  | 0.7 | 0.8 |  |
| 11-4 | 22.34 |  | 1.4 | 1.7 |  | 314 | 30.00 |  | 0.1 | $0 \cdot 4$ |  |
| 12-1 | 22.39 | 22.39 | 41.6 | 51.6 | 17.5 | 500 | $30 \cdot 14$ |  | $2 \cdot 4$ | 7 |  |

Table 1 (continued).

| $h k l$ | $2 \theta$ calc | $2 \theta$ obs | I calc 1 | Icalc 2 | Iobs | $h k l$ | $2 \theta$ calc | $2 \theta$ obs | I calc 1 | Icalc 2 | Iobs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 322 | 30.24 |  | 6.6 | 7.7 |  | 324 | 35.36 |  | 4.7 | 5.9 |  |
| 215 | 30.33 | $30 \cdot 31$ | $2 \cdot 3$ | 1.4 | 12 | 13-3 | 35.52 |  | 1.7 | $2 \cdot 1$ |  |
| 20-6 | 30.4 |  | 3.3 | 3.9 |  | 11-7 | 35.82 |  | 0.6 | 1.5 |  |
| 22-4 | 30.45 | 30.43 | 1.7 | 1.2 | $3 \cdot 3$ | 51-4 | 35.83 | 35.87 | 2.6 | $2 \cdot 4$ | 3.7 |
| 106 | 30.56 |  | 0 | 0.4 |  | 32-5 | 35.91 |  | 4 | 4.5 |  |
| 32-3 | 30.59 |  | 0.7 | 1.5 |  | 232 | 36.04 |  | 9.5 | 10 | 12.6 |
| 31-5 | 30.63 | $30 \cdot 64$ | 1.6 | 1.0 | $2 \cdot 4$ | 133 | 36.09 | 36.07 | 13.8 | 13.3 |  |
| 50-2 | 30.64 |  | 0.7 | 0.8 |  | 12-6 | $36 \cdot 35$ |  | 1.9 | 0.9 |  |
| 501 | 31.08 |  | $0 \cdot 1$ | 0 |  | 600 | 36.35 |  | 0 | 1.7 |  |
| 11-6 | 31.13 |  | 0.9 | 1.6 |  | 405 | 36.36 | $36 \cdot 37$ | 0.6 | 0.2 | 2.7 |
| 41-4 | 31.18 | 31.19 | 3.3 | 2.6 | 8.6 | 42-4 | 36.39 |  | 0.6 | 0.5 |  |
| 016 | 31.18 |  | 0.3 | 0.1 |  | 026 | 36.39 |  | 2.4 | 2.9 |  |
| 413 | 31.46 | 31.54 | 6.7 | 6.7 | 3.7 | 423 | 36.63 |  | 10.3 | $10 \cdot 4$ |  |
| 51-1 | 31.86 | 31.85 | 3.7 | 2.9 | 4.2 | 513 | 36.73 | 36.71 | 3.6 | 5 |  |
| 305 | 32.00 |  | 1.9 | $2 \cdot 2$ |  | 23-3 | 36.81 |  | 18 | 19.3 | 15.3 |
| 510 | 32.01 | 32.06 | 5.9 | 7.3 | $12 \cdot 9$ | 330 | 36.9 | 36.89 | 33.7 | 37.3 | $32 \cdot 8$ |
| 50-3 | 32.05 |  | 4.6 | $5 \cdot 1$ |  | 33-1 | 36.96 |  | 5.9 | 8.2 |  |
| 42-1 | $32 \cdot 17$ |  | 2.6 | 1.3 |  | 126 | 37.47 |  | $6 \cdot 4$ | $6 \cdot 5$ |  |
| 224 | $32 \cdot 17$ |  | 7.5 | 11.6 |  | 331 | 37.52 | 37.50 | 40.7 | $48 \cdot 1$ | 20.8 |
| 420 | 32.21 | 32.25 | 3.4 | 5.2 | 10.9 | 52-2 | 37.53 |  | 5.9 | 6 |  |
| 21-6 | 32.26 |  | 1 | 0.6 |  | 034 | 37.67 |  | 0.9 | 0.9 |  |
| 031 | 32.35 |  | 0.4 | 1.3 |  | 33-2 | 37.69 | 37.66 | 12 | 10.4 | $17 \cdot 6$ |
| 40-5 | 32.39 |  | 1 | 1.3 |  | 60-3 | 37.72 |  | $5 \cdot 2$ | 5.5 |  |
| 116 | 32.41 |  | $1 \cdot 1$ | 1.7 |  | 316 | 37.88 |  | 4 | 5.6 |  |
| 025 | 32.44 |  | 2 | $2 \cdot 1$ |  | 521 | 37.91 |  | $2 \cdot 1$ | 3.6 |  |
| 51-2 | 32.48 | 32.51 | 11.6 | 10.9 | 10 | 233 | 37.91 | 37.91 | 8.3 | $11 \cdot 1$ | 8.3 |
| 12-5 | 32.50 |  | 0.8 | 1 |  | 504 | 37.95 |  | 1 | 0.4 |  |
| 323 | $32 \cdot 52$ |  | $3 \cdot 4$ | 2.9 |  | 610 | 37.95 |  | 1.4 | 0.3 |  |
| 130 | 32.55 |  | 1.6 | 2.2 |  | 415 | 37.95 |  | $6 \cdot 4$ | 7.3 |  |
| 30-6 | 32.72 |  | 1.1 | 2.4 |  | 611 | 38.82 | 38.82 | 13.9 | $13 \cdot 2$ | 7.9 |
| 404 | 32.74 |  | $0 \cdot 4$ | 0.8 |  | 23-4 | 38.94 |  | $2 \cdot 7$ | 2 |  |
| 502 | 32.76 |  | $2 \cdot 3$ | $2 \cdot 4$ |  | 42-5 | 39.02 |  | 7.5 | 4.9 |  |
| 13-1 | 32.82 |  | $2 \cdot 1$ | $2 \cdot 4$ |  | 32-6 | 39.3 |  | 1.3 | $2 \cdot 8$ |  |
| 42-2 | 32.89 |  | $1 \cdot 1$ | 1 |  | 424 | 39.31 | 39.31 | $5 \cdot 2$ | 5.7 | 4.2 |
| 511 | 32.91 | 32.86 | $5 \cdot 6$ | $4 \cdot 5$ | $7 \cdot 6$ | 514 | 39.49 | 39.45 | $6 \cdot 4$ | 9.6 | 8.5 |
| 206 | 32.96 |  | $3 \cdot 4$ | 2-1 |  | 226 | 39.50 |  | 3.3 | 2.4 |  |
| 32-4 | 32.97 |  | 7.6 | 8.8 |  | 20-8 | 39.9 | 39.85 | 8.6 | 12.6 | 20 |
| 421 | 33.00 |  | 3.9 | 3.5 |  | 234 | $40 \cdot 34$ |  | 4.3 | 3.7 |  |
| 131 | 33.03 | 33.04 | 20.6 | 28.7 | 18.4 | 612 | 40.3 | 40.31 | $6 \cdot 3$ | 5.8 | 7.9 |
| 032 | 33.47 |  | 0.6 | 0.7 |  | 52-4 | 40.52 | $40 \cdot 55$ | 8.5 | 8.9 | $5 \cdot 3$ |
| 125 | 33.52 | $32 \cdot 52$ | $0 \cdot 1$ | 0.1 | $6 \cdot 2$ | 603 | $40 \cdot 9$ | 40.93 | 4.6 | 5 | $6 \cdot 2$ |
| 22-5 | 33.69 | 33.62 | 4.3 | $4 \cdot 8$ | $2 \cdot 4$ | 43-2 | 40.94 |  | 1.9 | $2 \cdot 4$ |  |
| 315 | 33.78 |  | 0.7 | 0.4 |  | 431 | 41.03 |  | 4.7 | 5 |  |
| 51-3 | 33.83 |  | 4.2 | 4.5 |  | 523 | 41.33 | 41.31 | 5 | 6 | 4.9 |
| 13-2 | 33.83 | 33.83 | $5 \cdot 5$ | 5.3 | $6 \cdot 2$ | 416 | 41.79 |  | 4.4 | $4 \cdot 8$ |  |
| 10-7 | 34.13 |  | $0 \cdot 1$ | $0 \cdot 1$ |  | 118 | 42.01 | 42.04 | 3.6 | 4.4 | $3 \cdot 4$ |
| 50-4 | $34 \cdot 14$ |  | 0.6 | 0.9 |  | 317 | 42.24 |  | 2.6 | $2 \cdot 3$ |  |
| 41-5 | $34 \cdot 15$ |  | 2.6 | 3.6 |  | 62-1 | 42.25 | $42 \cdot 23$ | 4.6 | $4 \cdot 1$ | 1.9 |
| 132 | 34.23 |  | $2 \cdot 6$ | 2.4 |  | 613 | 42.35 | $42 \cdot 37$ | $5 \cdot 4$ | 4.6 | 2.7 |
| 230 | 34.24 | 34.27 | $5 \cdot 2$ | 4.7 | 6.6 | 425 | 42.44 |  | 3.7 | 4.2 |  |
| 007 | 34.28 |  | 1.6 | 2.5 |  | 208 | 42.62 |  | 1.6 | $2 \cdot 1$ |  |
| 42-3 | 34.32 |  | $0 \cdot 3$ | 0.3 |  | 62-2 | 42.65 | 42.59 | 3.7 | 5.3 | 1.3 |
| 23-1 | 34.4 |  | 7 | 6.8 |  | 31-8 | 43.07 | 42.96 | $5 \cdot 3$ | $5 \cdot 7$ | $5 \cdot 3$ |
| 31-6 | 34.47 |  | 1.7 | 1.7 |  | 61-5 | $43 \cdot 18$ | $43 \cdot 18$ | $10 \cdot 2$ | 11 | 7.6 |
| 414 | 34.48 |  | 8.9 | 7.5 | 8.5 | 621 | $43 \cdot 24$ |  | 13.5 | 16.7 |  |
| 422 | 34.50 | 34.53 | $0 \cdot 1$ | $0 \cdot 1$ |  | 041 | 43.38 |  | 7.2 | 5.8 |  |
| 512 | 34.51 |  | $1 \cdot 3$ | $1 \cdot 1$ |  | 33-5 | 43.48 |  | 3.9 | $5 \cdot 3$ |  |
| 216 | 34.7 |  | 0.9 | 0.7 |  | 218 | 44.03 |  | 0.6 | 0.6 |  |
| 231 | 34.8 |  | $3 \cdot 3$ | $3 \cdot 2$ |  | 40-8 | 44.12 | 44.03 | 9.9 | 11.9 | 10.8 |
| 20-7 | 35.08 | 35.08 | 3.9 | 4.7 | 6 | 10-9 | 44.25 | 44.21 | 5.3 | 5.4 | 9.6 |
| 503 | 35.09 |  | 1 | 1.2 |  | 60-6 | 44.53 |  | 0.3 | 0.1 |  |
| 23-2 | 35.27 | 35.27 | 18 | 15.6 | 3.7 | 009 | 44.53 | 44.51 | 11.6 | 14.7 | 18.7 |
| 033 | $35 \cdot 27$ |  | $6 \cdot 3$ | 6.6 |  | 14-2 | 44.54 |  | 9 | 8.3 |  |

Table 1 (continued).

| hkl | $2 \theta$ calc | $2 \theta$ obs | Icalc 1 | I calc 2 | I obs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 53-2 | 44.87 | 44.87 | $5 \cdot 3$ | $6 \cdot 4$ | 12.3 |
| 22-8 | 45.60 |  | $10 \cdot 5$ | $10 \cdot 8$ |  |
| 11-9 | 45.62 | 45.63 | $9 \cdot 2$ | $12 \cdot 1$ | 22.1 |
| 52-6 | 45.65 |  | 1 | 0.6 |  |
| 109 | 45.68 |  | 8.2 | 8.5 |  |
| 24-2 | 45.70 |  | $3 \cdot 4$ | $2 \cdot 8$ |  |
| 14-3 | 45.9 |  | 2.9 | $3 \cdot 1$ |  |
| 21-9 | $46 \cdot 22$ | 46-27 | 3 | $3 \cdot 2$ | $5 \cdot 2$ |
| 143 | $46 \cdot 36$ |  | 3.9 | $3 \cdot 8$ |  |
| 327 | $46 \cdot 39$ |  | 4 | 4.9 |  |
| 434 | 46.41 |  | 4.3 | 4.4 |  |
| 71-4 | 46.46 | 46.46 | 7 | 6.7 | 7.5 |
| 623 | 46.49 |  | $8 \cdot 3$ | 10.6 |  |
| 340 | 47.02 | 47.07 | 10.3 | $12 \cdot 8$ | 6.3 |
| 34-1 | 47.07 |  | $3 \cdot 6$ | $3 \cdot 1$ |  |
| 341 | 47.53 |  | 8 | 8.5 |  |
| 31-9 | 47.65 | 47.64 | 8.6 | 9.9 | 8.5 |
| 34-2 | 47.67 |  | 3 | 3.8 |  |
| 720 | 48.11 |  | $3 \cdot 1$ | 4.6 |  |
| 713 | 48.25 | $48 \cdot 26$ | $3 \cdot 8$ | 4.3 | $6 \cdot 3$ |
| 144 | 48.37 |  | 4.9 | 4.7 |  |
| 342 | 48.57 |  | 8.6 | $8 \cdot 1$ |  |
| 51-8 | 48.69 | 48.64 | $2 \cdot 3$ | 1.7 | 3.6 |
| 63-1 | 49.01 |  | $2 \cdot 1$ | $2 \cdot 1$ |  |
| 630 | 49.18 | 49.24 | $2 \cdot 4$ | 1.9 | 1 |
| 42-8 | 49.43 | 49.41 | $3 \cdot 1$ | 2.9 | 0.7 |
| 029 | 49.8 |  | $6 \cdot 2$ | 7.6 |  |
| 631 | 49.89 |  | 18.5 | 18.8 |  |
| 440 | 49.92 |  | 3 | $2 \cdot 3$ |  |

Table 2. Scattering angles and observed intensities for the $\mathrm{C}_{5}$ phase.

| $2 \theta$ obs | Iobs | $2 \theta$ obs | Iobs |
| ---: | ---: | :--- | :---: |
| 5.73 | 1000 | 23.3 | 8 |
| 10.65 | 81 | 23.75 | 7 |
| 13.21 | 183 | 24.44 | 541 |
| 15.8 | 73 | 24.93 | 52 |
| 18.36 | 17 | 27.21 | 22 |
| 18.94 | 46 | 28.46 | 52.2 |
| 19.07 | 33 | 28.86 | 46.2 |
| 19.34 | 114 | 29.22 | 61.3 |
| 19.62 | 333 | 29.49 | 77.9 |
| 20.39 | 266 | 29.79 | 74.5 |
| 20.84 | 641 | 30.59 | 31.8 |
| 20.99 | 236 | 31.25 | 19.2 |
| 21.36 | 54 | 31.51 | 42 |
| 22.02 | 52 | 32.35 | 14.7 |
| 22.24 | 28 | 34.66 | 4.7 |
| 22.59 | 56 | 34.9 | 4.2 |
| 22.95 | 76 | 35.8 | 9.5 |
| 23.12 | 11 | 36.16 | 13.8 |

Table 3. Cell parameters for the $\mathrm{C}_{4}$ phase from the 'DICVOL91' refinements versus the number of peaks taken into account, and the related figures of merit $M$ and $F$.

| $N$ peaks | $a / \AA$ | $b / \AA$ | $c / \AA$ | $\beta / \AA$ | $M$ | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | $14.897(0.014)$ | $8.376(0.008)$ | $18.409(0.013)$ | $96.56(0.09)$ | 18.2 | 48.7 |
| 30 | $14.891(0.009)$ | $8.386(0.003)$ | $18.411(0.007)$ | $96.51(0.04)$ | 14.8 | 51.1 |
| 50 | $14.872(0.007)$ | $8.388(0.002)$ | $18.415(0.007)$ | $96.5(0.03)$ | 8.2 | 36.2 |

Table 4. Initial and final potential parameters for the $\mathrm{C}_{4}$ phase from a 'WMIN' refinement. (van der Waals): $E_{\mathrm{jk}}^{\mathrm{W}}=-A_{\mathrm{jk}} / r_{\mathrm{jk}}^{\mathrm{G}}$; (repulsion): $E_{\mathrm{jk}}^{\mathrm{R}}=B_{\mathrm{jk}} \exp \left(-C_{\mathrm{jk}} r_{\mathrm{jk}}\right)$.

|  | Initial parameters | Final parameters | Relative variations/ $10^{-2}$ |
| :---: | :---: | :---: | :---: |
| $A_{\mathrm{C}-\mathrm{C}} / \mathrm{kcal} \overline{\mathrm{A}}^{6} \mathrm{~mol}^{-1}$ | $583 \cdot 13$ | 577.29 | 1.0 |
| $A_{0-0}$ | 268.55 | 285.18 | $6 \cdot 2$ |
| $A_{\text {N-N }}$ | 329.45 | 389.74 | 18.3 |
| $A_{\text {H-H }}$ | 32.60 | 32.90 | 0.9 |
| $B_{\mathrm{C}-\mathrm{C}} / \mathrm{kcal} \mathrm{mol}^{-1}$ | $88370 \cdot 7$ | 88107.1 | $0 \cdot 3$ |
| $B_{\text {O-O }}$ | $54986 \cdot 6$ | $56640 \cdot 2$ | 3.0 |
| $B_{\mathrm{N}-\mathrm{N}}$ | 60833.9 | 66392.3 | $9 \cdot 1$ |
| $B_{\mathrm{H}-\mathrm{H}}$ | 2861.1 | 2875.1 | 0.5 |
| $C_{\text {C-C }} \bar{A}^{-1}$ | 3.60 |  |  |
| $C_{0-\mathrm{O}}$ | 3.96 |  |  |
| $C_{\text {N-N }}$ | 3.78 |  |  |
| $C_{\text {H }+\mathrm{NH}}$ | 3.74 |  |  |

reciprocal lattice into a sphere of $0.3 \AA^{-1}$ radius. At the convergence, the lattice parameters $a, b$, and $c$ have been respectively changed by $2.3,1.4$, and 0.9 per cent and the monoclinic angle by -1.1 per cent. The molecular centres of mass are translated by no more than $0.1 \AA$ and the molecular rotations are less than $2^{\circ}$. These results are relatively satisfactory for such a phase. The calculated energies are $E^{\mathrm{W}}=-48.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and $E^{\mathrm{R}}=19.0 \mathrm{kcalmol}^{-1}$ giving a total lattice energy $E^{\mathrm{T}}=-29.2 \mathrm{kcal} \mathrm{mol}^{-1}$.

We have also tested the potential parameters from a refinement of the $A_{\mathrm{jj}}$ and the $B_{\mathrm{jj}}$ coefficients. The $C_{\mathrm{jj}}$ parameters have been kept fixed because of their dependence on the $B_{\mathrm{ij}}$ parameters. The final values of the parameters and their related variations are displayed in table 4. The carbon and hydrogen parameters vary less than the oxygen and nitrogen parameters. This is probably due to the fact that the coulombic interactions have been neglected. Nevertheless, there are only one oxygen and one nitrogen atom in the 41 atoms of the molecule and we can suppose that their contribution to the total potential is negligible. This is shown by the minimum final energy $-29.3 \mathrm{kcal} \mathrm{mol}^{-1}$ which is close to that obtained with the starting parameters ( $-29.2 \mathrm{kcal} \mathrm{mol}^{-1}$ ).

The measured Raman frequencies (see figure 3) for the $\mathrm{C}_{4}$ phase are compared with the calculated values in table 5 . We can obtain 33 optical modes which are all Raman active, but many of them are not experimentally resolved (see figure 3).

### 3.2. The $C_{3}$ phase

Annealing of the $\mathrm{C}_{0}$ phase at 240 K gives the $\mathrm{C}_{3}$ phase. When the transformation is completed, a further annealing at 270 K produces the $\mathrm{C}_{4}$ phase. The structure of the $\mathrm{C}_{3}$


Figure 3. Raman spectrum of the $\mathrm{C}_{4}$ phase.
phase not being directly correlated with the $\mathrm{C}_{4}$ phase, the structure does not appear obvious owing to the texture of the sample.

The collected data for the $C_{3}$ phase at 110 K have been used to define the cell parameters. From the powder diffraction pattern shown in figure 4, the first 23 peaks have been used with the program DICVOL91. We have obtained a monoclinic cell with parameters: $\quad a=14.119(0.010) \AA, \quad b=6.763(0.006) \AA$, $c=16.067(0.009) \AA, \quad \beta=100.83(0.06)^{\circ}$ which corresponds to a volume of $V=1506 \cdot 9 \AA^{3}$. The figures of merit are: $\mathrm{M}(23)=6 \cdot 5, \mathrm{~F}(23)=12 \cdot 0$. The volume of the $\mathrm{C}_{4}$ phase being $2282.2 \AA^{3}$ with $Z=6$, the cell of the $\mathrm{C}_{3}$ phase contains four molecules ( $Z=4, V=1521 \AA^{3}$ ). Table 6 gives the indices and the intensities of the observed Bragg peaks.

Table 5. Calculated (Calc) and observed (Exp) Raman frequencies for the $\mathrm{C}_{4}$ phase and experimental values of half width at half maximum (HWHM).

| Exp/cm ${ }^{-1}$ | Exp HWHM/cm ${ }^{-1}$ | Calc/cm ${ }^{-1}$ | Exp/cm ${ }^{-1}$ | Exp HWHM/cm ${ }^{-1}$ | Calc/cm ${ }^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13.2 | 1.6 |  | $73 \cdot 1$ | 15 | 67.5-67.6 |
| 16.8 | 1.4 | 19.9 |  |  | 69.4 |
|  |  |  |  |  | 75.4-76.7 |
| 21.9 | $4 \cdot 1$ |  |  |  | 78.5-78.8 |
|  |  | 24.6 |  |  | 83.3 |
| 27.2 | $5 \cdot 3$ |  |  |  | 87.7 |
|  |  |  | $92 \cdot 1$ | 18.3 | 94.2 |
| 33.6 | 4.6 | $33 \cdot 1-33 \cdot 4$ |  |  | 96 |
|  |  | 38.2 |  |  | 98.1 |
|  |  | $43 \cdot 3$ |  |  | 100.3 |
| 44.5 | $4 \cdot 1$ | 45.5-46.6 | $106 \cdot 1$ | 9.7 | 104.8 |
|  |  | 48-2 |  |  | 109 |
| $52 \cdot 2$ | 6.4 | $52.4-53.1$ | 114.7 | 13.6 | $113.8$ |
|  |  | $55 \cdot 1$ |  |  | $116.3$ |
| 59.4 | 8.4 | 59.6 | 132.9 | 19.6 |  |
|  |  | 62.2-62.4 |  |  |  |



Figure 4. X-ray powder diffraction pattern of the $\mathrm{C}_{3}$ phase.

## 4. Conclusions

We are able to show that the $\mathrm{C}_{4}$ phase of MBBA corresponds to the structure that had been previously determined by Boese et al. [8], and wrongly attributed to the $\mathrm{C}_{5}$ phase. This result has been obtained by comparing the results from our powder diffraction studies with a
simulated pattern given by this structure. This has been achieved by a precise knowledge of thermal treatments and particularly by the ability, using a multidetector, to follow the progress of the transformations kinetics. It is obvious that the procedure employed (in [8]) to grow the monocrystal has been done in such a way that the quenched $C_{0}$ phase has been obtained first and then transformed to the 'more stable' $\mathrm{C}_{4}$ phase by annealing. It remains for the structure of the $\mathrm{C}_{5}$ and $\mathrm{C}_{6}$ phases to be determined. These phases have been modelled: (i) from results of energy calculations using atom-atom potentials from series of mesomorphic fluorinated derivatives $[18,19]$ and (ii) from a structure based on that of EBBA [4]. Simulations of powder diagrams of these structures do not coincide with our powder results, and it would be helpful to perform other measurements using the method employed to grow low temperature monocrystals. It seems that this could be achieved by first, growing the $\mathrm{C}_{6}$ phase at a temperature near the nematic to $\mathrm{C}_{6}$ transformation, and then lowering the temperature to the $\mathrm{C}_{5}$ phase, since this transition appears to be nearly second order.

Table 6. Observed ( $2 \theta$ obs) and calculated ( $2 \theta$ calc) diffraction angles for the $\mathrm{C}_{3}$ from the DICVOL91 program and the corresponding observed intensities.

| $h k l$ | 20 calc | $2 \theta$ obs | I obs | hkl | 20 calc | 20 obs | I obs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 5.59 | 5.56 | $780 \cdot 6$ | 41-1 | 28.51 | 28.51 | 7.5 |
| 002 | 11.2 | 11.14 | 90.7 | 41-2 | 29.24 | 29.15 | 44.5 |
| 10-2 | 11.81 | 11.79 | 26.2 | 22-1 | 29.44 | 29.45 | $165 \cdot 5$ |
| 200 | 12.76 | 12.75 | 19.7 | 221 | 30.38 |  |  |
| 011 | 14.24 | 14.23 | 11.2 | 411 | 30.41 | $30 \cdot 44$ | 26.5 |
| 110 | 14.56 | 14.49 | 5.9 | 22-2 | 30.61 | 30.69 | 13.3 |
| 111 | 16.04 | 16.05 | 7.4 | 023 | 31.42 | 31.42 | 11.1 |
| 003 | 16.84 | 16.78 | $10 \cdot 9$ | 12-3 | 31.43 |  |  |
| 10-3 | 16.85 |  |  | 50-2 | $32 \cdot 11$ | 32.11 | 21.8 |
| 210 | 18.31 | 18.31 | $200 \cdot 1$ | 412 | $32 \cdot 87$ | 32.95 | 6.5 |
| 202 | 18.54 | 18.52 | 123.7 | 205 | 33.3 | 33-25 | 9.1 |
| 103 | 19.12 |  |  | 41-4 | 33.73 | 33.74 | 27.3 |
| 112 | 19.14 | 19.13 | 366.5 | 51-1 | 34.39 | 34.26 | 2.9 |
| 20-3 | 19.15 |  |  | 510 | 34.94 | 34.99 | 1.3 |
| 211 | 19.86 | 19.96 | 24.6 | 32-3 | 35.3 | $35 \cdot 37$ | 11.6 |
| 21-2 | 20.21 | 20.17 | 32.6 | 502 | 36.26 | 36-21 | 3.6 |
| 30-2 | 20.34 | 20.36 | 75.7 | 016 | 36.63 |  |  |
| 013 | 21.39 |  |  | 21-6 | 36.65 | 36.66 | 2.4 |
| 11-3 | 21.39 | 21.44 | 1000 | 420 | 37.11 | 37.02 | 6 |
| 30-3 | 23.09 | 23.05 | 456 | 305 | 37.37 |  |  |
| 113 | 23.24 | 23.23 | 71.8 | 42-2 | 37.37 | 37.41 | $5 \cdot 4$ |
| 20-4 | 23.74 | 23.73 | 164.9 |  |  | 37.73 | 2.8 |
| 31-2 | 24.26 | 24.27 | 7.4 | 60-1 | 38.25 | 38.23 | 14.9 |
| 400 | 25.68 | 25.67 | 28.4 | 206 | 38.80 |  |  |
| 021 | 26.94 | 26.91 | 17.7 | 42-3 | 38.83 | 38.82 | 16.01 |
| 120 | 27.12 | 27.19 | 24.9 | 224 | 28.83 |  |  |
| 10-5 | 27.76 | 27.78 | 153.5 | 60-3 | 39.5 | 39.5 | 39.7 |
| 114 | 27.93 |  |  | 130 | $40 \cdot 51$ | 40.54 | 10.8 |
| 121 | 27.96 |  |  | 61-1 | 40.59 |  |  |
| 303 | 27.96 | 27.98 | $3 \cdot 1$ | 61-2 | 40.78 | 40.85 | $3 \cdot 5$ |
|  |  |  |  | 11-7 | 41.53 | 41.53 | 8.2 |

## References

[1] Chandrasekhar, S., Liquid Crystals (Cambridge University Press), p. 342.
[2] De Jeu, W. H., 1980, Physical Properties of Liquid Crystalline Materials (Gordon \& Breach), p. 133.
[3] Dolganov, V. K., Kroo, N., Rosta, L., Sheka, E. F., and Szabon, J., 1985, Molec. Crystals liq. Crystals, 127, 187.
[4] Rosta, L., Kroo, N., Dolganov, V. K., Pacher, P., Simin, V. G., Török, Gy., and Pepy, G., 1987, Molec. Crystals liq. Crystals, 144, 297.
[5] Pepy, G., Fouret, R., More, M., and Rosta, L., 1989, Physica Scripta, 39, 485.
[6] Fouret, R., Elouatib, A., Gors, C., More, M., Pepy, G., and Rosta, L., 1991, Phase Transit., 33, 209.
[7] Beluskin, A. V., Dolganov, V. K., Natkaniec, I., and Simkin, V. G., 1987, Molec. Crystals liq. Crystals, 15, 187.
[8] Boese, R., Antipin, M. Yu., Nussbaumer, M., and Bläser, D., 1992, Liq. Crystals, 12, 431.
[9] Yvon, K., Jeitschoo, W., and Parthe, E., 1977, J. appl. Crystallogr., 10, 73.
[10] Odou, G., and Naviez, D., 1987, Spectra 2000, No. 137, Vol. 17.
[11] Evain, M., Deniard, P., Jounneaux, A., and Brec, R., 1993, J. appl. Crystallogr., 26, 563.
[12] BOultif, A., and Loü̈r, D., 1991, J. appl. Crystallogr., 24, 987.
[13] DE Wolff, P. M., 1968, J. appl. Crystallogr., 5, 108.
[14] Smith, G. S., and Snyder, R. L., 1979, J. appl. Crystallogr., 12, 60.
[15] Busing, W. R., 1981, Acta crystallogr. A, 28, 252.
[16] Williams, D. E., and Houpt, D. J., 1986, Acta crystallogr. B, 42, 28.
[17] Williams, D. E., and Cox, S. R., 1984, Acta crystallogr, B, 40, 404.
[18] Sereda, S. V., Timofeeva, T. V., Antipin, M. Yu., and Struchkov, Yu. T., 1992, Liq. Crystals, 11, 839.
[19] Sereda, S. V., Timofeeva, T. V., and Struchkov, Yu. T., 1991, Soviet Phys. Crystallogr., 36, 446.


[^0]:    * Author for correspondence.

